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FOREWORD

This final technical report wss prepared by F.M. White,
R.C. Lessmann, and G.H. Christoph of the Department of Mechan-
ical Engineering and Applied Mechanics of the University of
Rhode Island under Contrait F33615-71-C-1585, "Analysis of the
Turbulent Boundary Layer in Axisymmetri- and Three-Dimensional
Flows."

The contract was initiated under Project No. J426, "Ex-
perimental Simulation of Flight Mechanics,' Task No. 142604:
"Theory of Dynamic Simulation of Flight Environment." The
work was administered by the Air Force Flight Dynanics Labor-
atory, Wright-Patterson Air Force Base, Ohio, Dr. Jaese T. Van
Kuren (FX), Project Engineer.

The work was accomplished during the period 1 June 1971
through 30 June 1972.

The report was submitted by the authors in Jrly 3972.

A supplement containing an outline of the theoretical
method for engineering use is available under the title "Rapid
Engineering Calculation of Two-Dimensional Turbulent Skin
Friction."

This technical report has been reviewed and is approved.

P PP. #J!TOIATOS
ChAef, Flight Mechanics Division
Air Force Flight Dynamics
Laboratory
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INTROrUCTION

This report summarizes work to cate on a new method,

simple yet accura e, for analyzing the turbulent boundary

layer for the varl.ation of sarface shear stress and heat

transfer under fairly arbitrary conditions. Earlier work

was concerned with vwo-dimensional compressible flow and

was summarlzed in the report by :.-dite -nd Christoph (1970)

and a subsequent published peper, White and Zhristoph

(1972). Another, more comprehensive paper, including such

effects as roughness and wall transpiration, has also been

published: White and Christoph (1971). The latter paper

is also confined to two-dimensional flow.

The present report extends this new theory to ÷wo new

types of conditions: 1) a skin friction theory for

axisymmetric and three-dimensional flow conditions; and

2) a new analysis for two-dimensional surface heat

transfer. The approach retains the earlier philosophy of

using only wall-related temperature and velocity profiles

to develop integral relations for skin friction and heat

transfer which are devoid of shape factors or integral

thicknesses. Thus, for examplL; the axisymmetric theory

results in a single differential equation for wall skin

friction, with no other variables eppearing.

It is convenient to di.ida the report into tnree

chapters. Th_ first chapter develops a two-dimensional thec.

for surface heat transfer (or Stanton namber) for compress-

ible flow with arbitrary wall tempe-ature. This extcnds the

14
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earlier report., i,.hite and Thristoph (1970), which consider-

ed -kin friction only and elirminated the temperature through

a Crocco approximation. The new theory results in two first-

order coupled differential equations for skin friction

coefficient and Stanton number. The theory is compared with

variable wall tempersvure End pressure gradient experiments,

anr an approximate correlation is found which relates the

Reymolds analogy factor (ch/cf) to the local pressure

gradient.

The qecond chapter develops an analysis for compress-

ible axisyrwietric flow with pressure gradients. T-he boundary

layer is assrTaed tc be thick, so that transverse curvature

is ir•ortant, and temperature is eliminated through the

Crocco &pproximation. The resalt is a single first-order

differential equatiop for t"he skin friction coefficient.

Comparison is made with experiments for supersonic flow

along thin zylinders and bodies of revolution. The transverse

curvature effect can be quite large, causing skin friction

increases of 1004 or more in both subsonic and supersonic

flows. Some earlier work on this type of analys.s was

given in a paper by White (1972).

The third and final chapter is concerned with three-

dimensional incompressible turbulent skin friction. The

distinguishing characteristic of a three-dimensioneCL

boundary layer is a crossflow normal to the freestream

direction, resulting in a vector wall shear stress which has

both streamwise and crossflow components. Since both shear

2



components vary with bosh surface co~rdlnares, partial

differential eqdations are ine-.-itable. The present analysis

uses both a streamwise ana a crossflow law-of-the-wall to

deriv2 two first order coupled part:Lal differential

equrations for the two surface shear :omponencs. As with

previous work, there are no shape factors o r integral thick-

ness present. Also, the partlal d'Lffe--.ti•a' equat-ons

are of such simple fPn.i a .... , *-ý .. y - l" to -, v'

simple finite difference techniqae. .'-' " -i-rs

applied to several experimental flows.. ant' ,'Ie %sx-eement is

very promi.inj, particularly considering t. lative

inaccuracy of present three-dimensisn!.f). flcow :asurements.

i
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ThaDter One

H.at Trarsfe;• naryi:is

introduction

The purpose of this chapter is to develop a method for

calculating beat trarsfer coefficients for arbitrarily high

Mach numbers, variable wall temperatures, and variable

streamwise p-.essure gradients. The present analysis is

restricted to steady, two-dimensional flow of a perfect gas

in a compressible turbulent boundary layer. The lateral

pressure gradient will be neglected since, although the

lateral gradient strongly influences the momentum thickness

in high Mach number fi1sws, it appears to have negligible

effect on the approach proposed here. Twv coupled, first

order, ordinary differential equations are derived which

have for dependent variables -only the skin friction coeffi-

cient and the Stanton number. Stanton numbers are calculat-

ed and compared to the data of Moretti and Kays (1965). A

relationship among skin friction, heat transfer, and pressure

gradient is presented.

1.2 Development of the New Method

The equations governing compressible, two-dimensional

turbulent boundary layer mean flow analyses were apparently

first given by Young (1953) in the following form:

4



a) he ctntinnuity equation:

P U) + (pv) = 0

b,) The momentum equation:

ýu ýU = +u _+

e) _The energy equation:

6ho Oh C y

Pu - + v -+(q-u¶) 4--

d) The perfect gas law:

p = RT, or: T/T. = p/p)

Here h = c T + u2,'2 is the stagnation enthalpy, and theo p

symools q and T represent the heat flux and shear

stress, respectively. That is,

Z)T P 'T 'T=t u0

q k - p-U; = i - p 'V-

Tnere are six unknowns (p ,u,v,h,,q,T) and only four

equations, so that further relations are needed. The

finite difference methods model the eddy viscosity and eddy

conductivity, thus correlating the variables q and T with

5



local conditions, andi then attack the complete governing

equations. The so-called von Karman integral methods
eliminate p v from equations (1-2) and (1-3) by equation

(1-1) and then integrate with respect to y across the entire

boundary layer, thus obtaining the vyn hriian integral

relations. Additional relations for these integral methods

are then brought in as correlations between integral param-

eters.

The compressible flow analysis of White and Christoph

(1970, 1972) was based on Crocco's approximation for the

energy equation - cf. Schllchting (1968):

Prandtl number = unity; T = a - bu + cu, (1-6)

where ab,= are determined from boundary conditions.

Basically, the analysis of White and Christoph (1970,1972)

non-dimensionalizes the velocity u with respect to wall

quantities and then integrates equations (1-1) and (1-2)

with respect to the law-of-the-wall variable y" = y-u*/ Vw,

where u* = (Tw/pw)1/2 is the friction velocity. With

Crocco's approximation one can compute local heat transfer

only through a Reynolds analogy. Crocco's approximation

will not be made here. Instead, the energy equation, as

given by equation (1-3), will be used. 7-he velocity u

and the temperature T are non-dimensionallzed as follows:



u k= ux,y)/u*(x) and T = T(x,y)/Tw(X) . -7

Quantitati.ve expressions for - an,. T+ are needed.

The simple incompressible formula

? n(y) 5 (18)

and a similar ex:presslun for T are not adequate, Decause

we need to include compressibility, heat transfer, and

pressure gradient effects in t)- velocity and temperature

correlations. An analy-tcal approach of finding expressions

for u+ and T+ was desired, so thalt as little empiricism as

possible would be introduced into the present method. The

scheme adopted was based on the eddy viscosity approach of

Delssier (1959), which assumed that the Prandtl mixing

length approximation could be extended to the variable

density case with no further changes, Let us first derive

an expression for u . The total shear stress is related

to an eddy viscosity and mixing length as follows:

S: , (1-9)

where E = P ,y I

and s = 0.4 is von Kgrman's constant. Also, near the wall,

7



the boundary layer is approx:iately a Couette flow with

negligible acceleration, so that equation (1-2) becomes

¶- -•+• (I-10)

Non-dimensionali7.ing equations (1-9) and (1-1D) with respect

to wall vzribbles, we neglect the laminar portion of the

total shear in equation (1-9) (This step greatly simplifies

the final form of u" but has a negligible effect on the

numerical values of u+.). Equating equations (1-9) and

(1-10) results in

_u (T+(! + a y+))1/2 (`-i!)
ky + K Y +

where

a d 
(1-12)

This is the same parameter a , termed the "pressure

gradient" parameter, which appeared in White's (1969)

analysis, and which was suggested by the work of Mellor

(1966). It is an ideal parameter for this method because

it is directly related to the shear stress without any

8



integral thizknesses. ie now need an expression for T+.

Following the same approach, the total heat flux is relatei

to an eddy conductivity as follows:

C

q = -( I + C) Z-=

where P T is the turbulent Prarndtl nu;._.er. Near the wall,

one obtains from equation (1-3)

qW UT + q (1-14;

Again, non-di-mensionalizing equations (1-13) and (1-14),

neglecting the laminar portion of the total heat flux in
equ-:.tion (1-13), and equating equaticns (i-i3• and (i-14)

results in

.T+ = (0-2y u+(l + a y+))T+ 1/2

;3y + KY + (1 + y+) 1/2

where

PT andPTU*
2

Pw p OW 2PTW

The parameters 1 and y will be referred to as the "heat

9



transfer' parameter and zhe "compressibility" parameter,

respectively. The effectb of the parameters a , a ,

and N on u+ are shown in Figure (1-1). Positive a

(adverse pressure gradient) and positive a (cold wall

heat transfer) raise a + above the Incompressibl. logarith-

mic law, and negative a (favorable pressure gradient)

and negative f (hot wall heat transfer) have the opposite

effect. The parameter y , which is always positive,

lowers u+ celow the incompressible result. If more than

one of these parameters are nonzero, the effect is roughly

an additive one. Precisely these iffects have been found

experimentally, e.g., Kepler and O'Brien (1959), Lee et al

(1969), and Brott el al (1969). The "heat transfer"and

"compressibility" parameters have the same qualitative

effect on T as they do on u+. The "pressure gradient"

parameter alone does not affect T+. However, a positive

a combined with either a positive 1 or a negatLve

8 depresses the 0 effect on T+. A negative a has

the opposite effect. The compressibility effect is

increased with a positive a and decreased with a nega-

tive 0 . These results are shown in Figure (1-2).

Equations (1-11) and (1-15) give, for zero pressure

gradient,

6+ ay+ + +
- -- u1 (1-17)

8u+ 8+ 8u+

10



/

Effect of positive a (adverse
pressure gradient) and /
positive 6 (cold wall /

+ heat transfer). x

Effect of y (compressibility),
negative m (favorable pressure
gradient), and negative B
(hot wall heat transfer).

cannot be negative)

log(y+)

Figure 1.1. ILLUSTRATION OF THE EFFECT OF VARIOUS

PARAMETERS ON THE VELOCITY LAW-OF-IHE-WALL

FOR COMPRESSIBLE TURBULENT FLOW.
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log(y ;

Figure 1.2. ILLUSTRATION OF THE EFFE-CT OF VARIOUS

PARAMETERS ON :,TyE TEMPERATURE LAW-OF-THE-WALL

FOR COMPRESSIBLE TURBULENT FLOW.
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Integrating equation (1-!7) f'ives

T = 1 + u - u+ (-)

which is the form of Crocco's relation used by White rnd

Christoph (1970, 1972). If a does not equal zero, one

then obtains

S•T - u+(1+ ( y) (1-19)
zmu+ a y +

which is not a Crocco relation.

Let us continue the method of solution, by first

defining a compressible stream function * as follows

T - Pu; T - - v (1-20)

Eliminating p v from equations (1-2) and (1-3) by

equation (1-20), and non-dimensi nalizing u and T as in

equation (1-7) gives

Pu'u + (u-u+) - *- 2-- (u*U+)7x Tx - VWCy +

Su! (1-21)

13



qw

and

( u* + 5 u* _ (C TT+ +

Pw 2TY+

u* • (uT + q) (1-22)
Vw ýy+

The pressure gradient in equation (1-21) is related to the

freestream conditions by the inviscid Bernoulli relation:

d " e 0dUe (1-23)

The y +-derivatives in equations (1-?1) and (1-22) are no

problem because these equations are going to be integrated

with respect to y , but the x-derivatives must be calculated.

The functional relationships of u+, ±+, and A has

dimensions of viscosity) are

U+ IT+, # ALw = fcny+ W. 2 1, ) 11-24)

The Y-derivatives are calculated by using the chain rule:

y+ a 84

14



For skin friction ano heat transfer calculations, it is

ccnvenient to define further non-dimensionalizations:

x= x/L ; UeUo = (0/C2)/2

(1-26)
T = /T q = /( ) 3

- ,Pr w' e0 wewp~~~

where L, Uo, and Two are constant reference values. Now
+

use equations (1-26) in the definitions for y a, O, , id

y and carry out the partial derivatives in equation (1-25).

In so doing, derivatives of vw, P., and Te will arise.

Eliminate such derivatives in 7avor of (dIdx*) and

(dV/dx*) through eqation (1-4) and a viscosity power-law

ass'umtion U TTx where T is taken here as 0.67 for air.

Also use the relation between velocity, pressure, and

temperature in the freestream:

- dV dv -k d7e
k Me V - -- I-, (k = c/C) / (1-27)e V e

The net result is that equation (1-25) can now be written as:

i. 1 dX 1 - + -.._+ - 3-
•-AX*= TT -Y -+ 3a 1 6a + V 2v '>-V

V'I v I r- + (I/ V )"
+- 23 + 2V

(1-28)

+- -y ( 11 - 1/2) ;-- + z + 1/2) -

1 _+ (k+l)M2 Vr

ap
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where the primes denote differentiation with reEpect to x*.

Equation (1-28) is now substituted into equations (1-21)

and (1-22) and the resulting equations irlgrated from

+ .4,

y =0 ( - w) to y = t (T = 0). The result is

•X-*" (m-3a(•) -) i,2 '

+ XI -7V' - 1 -H- (2l) "e (.•H 2-H,-H) 5 -29)

ti -

- l • a(+l H2•H = RLV

and

- 3xaH ) (-6HSH) )_

Tx LL 2dx*H

- t (+l/2),, +{ =

where .RL is an effective Rieynolds number defined as:

UoL ie Te 1/2
RL - .2 ([S-) (•-) .(1-31)

e w w

1,~~~ ~ ~ ~ 4 .+)!2-;4 ;L

The Hi coefficients are Integrals in-Xo12ring a - n

law-of-the-wall parameters; they o're li'ted in Appendix A.

It is possible to numerically evaluate these H's once
u+ I u+ fu+ +T+ •T+ -

expressions for the derivatives umb dei- e , ,

16
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- and are found. Expressions for th-se derivatives

are obtained by differentiating, with respect to a, 0, and
+ +

y, the previously derived integrals for u , T +, and t,

Eqns.(1-11,15,20) respectively, at a fixed y Integral

expressions for these partial derivatives are given in

Appendix A; the change of variables du+ = (+/Ay+ )dy+ has

been made. The coefficients H are then evaluated by
+

integrating, the relations in Appendix A from u = 0 to

u+ = ue+ = )I(Te/Tw)l/2for various values of a, j3, and

Y. The turbulent Prandtl number PT, is taken as 0.9

The starting value of T is 1.0, and the initial value of

y+ is taken to be 0.1108 = exp(-5.5/2.5) to match with the

incompressible logarithmic law (Eqn.l-8) in the limit. Curve

fit expressions for the coefficients Hi are also given in

Appendix A.

The parameters a, (3, and y are related to the dependent

variables A1 nd x 2 as follows:

2 - W (1/v)/RL

Yue2 PT (2 M2e (To/Tw) (1-32)e T 2 e
+ 2

U = P K X M2 (k-l)(Te/Tw
e e 1

P 0.9 was found experimentally by Simpson, Whitten and
T
Moffat (1970). It is also the value assumed in most

finite-difference calculations, e.g. Cebeci (19F'l).
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Equations (1-29) and (1-30) are, then, two coupled,

first order, nonlinear, ordinary differential equations in

Xi and x 2 only. The freestream Mach number and wall tempera-

ture distributions must be known, plus the values of X1 and

)2 at some initial x*. Unfortunately, 5+ appears in

equation (1-29) and must be calculated. However, 5+ need

not be known precisely for accurate calculations of ii and

12. An approximate way of calculating 6+, and the one

recommended, is to first assume a Crocco law of the form in

equation (1-18). With this expression for T+, equaticn

(1-11) may be integrated analytically as

-1 2Yu+ -'I 2yu+-
Q 

(1-33)

+ ' 2 (P-Po + l ( =
oIT

where Q = (f2+4)1I/2 and P = (l+ay+)1/2

Equation (1-33) needs to be initialized. By plotting u+
+

versus y , as in Figure 1-I, it is seen that the curves for

various values of a, 0 aad Y converge at y+ slightly less

than ten. The initial conditions uo = 0 and y+ = 0.1108
+

were taken. Unfortunately, y is an. implicit function of

u so that an iteration scheme must be used.

The dependent variable X2 is directly related to the

Stanton number

ch er/T --a (1-34)

18



where the Stanton nmiber has been defined as

ch ew (-35)
e o e aw

Since XI is defined as (2/c 1 ) ., equations (1-29) and

(1-30) give c, and ch directly - no auxiliary information

is needed about the behavior of integral thickness or shape

factors. Another imnportant and unique property of equations

(1-29) and (1-30) is an explicit flow separation criterion.

As separation is approached, dX 1 dx* approaches infinity

and hence c, approaches zero - which is precisely the

definition of two-dimensional separation. One need not

worry about attempting to predict separation according to

a particular value of the slape factor.

one basic assumption is made in the development of the

present method; tha:. is, that the velocity and the tempera-

ture profiles, correlated by inner variables only, are valid

all the way to the edge of the boundary layer. This

assumption leads to a slight miscalculation in 6+, as seen

by Figure 1-3. The outer wake is not predicted accurately.

But, as was pointed out earlier, it is not terribly

imrortant to know b+ precisely in order to obtain accurate

skin friction and heat tranrsfer coefficients. Also, in a

supersonic turbulent boundary layer, the wake almost

disappears. Of course, there will be some error in the

momentum and the displacement thicknesses, if one wishes to

calculate them. In passing, it should be noted that, from

19
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log(y+)

Figure 1-3. COMPARISON OF THE PRESENT NEAR-WALL

THEORY WITH THE ACTUAL LAW-OF-THE-WAKE.
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equation (1-11), if ay+ is greater than minus one, then

' I I < 0. Thus the velocity gradient is negative, or

tne velocity insice thc botzndary -3yer has become greater

than the freestream velci'.yv. -o avoid this difficulty,

it is suggested that one take Fla- = -I/a in the case of

a favorable pressure gradient. This is not believed to

handicap the present methoc.

1.3 Comparison With Heat 'ramnsfer Experiments

1.3.1 Flat Plate rita

First, it seems appropriate to consider a special case,

namely when da- dq p = = G. For this case, thenaey hndx -•x dx

present analysis reduces to the analysis given by White and

Christoph (1970, 19"). Equacion (1-29) reduces to:

d).!
n! ' = , (1-36)

which integrates to:

0.455

-f A-Li 0.06 (TT /

where A is the van Lriest flat plate parameter, given by

equation (2-32) and plotted in Figure 2-3.

3I
4
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This result is expressed in terms of a flat plate

compressibility transformation for skin friction as follows

(in the .notation of Spalding and Chi (1964)):

1 A2

Cf = •Cf (Rn.Rx) where F =A
f C f inc.

(1-38)

and F.Rx = (Te/Tw) +.A

The present theory and five other theories, the five most

popular and accurate knc;a4n, were compared to 427 adiabatic

and 230 cold wall heat tntsfer data points. The five

other theories were cast in the same form as equation (1-38),

but of course F and F were differtnt for each theory.

All theories were computed with the incompressible skin

friction formula of Spalding and Chi (1964), which apparent-

ly gives the best agreement with incompressible friction

data. Both the root mean square error and the mean abso-

lute error were computed. The results are shown in Table

1-1. For adiabatic wall, the methods of Spalding and Chi

(1964), van Driest (1956b) and the present theory are

equally accurate. For cold wall heat transfer, the present

theory has the lowest percent error, with !Mcore (1962)

second. The present method is thus the most accurate flat

plate theory available at the presený time, with the added

advantage that it can be extended to more general freestream

and wall conditions (White and Zhristoph 1971).
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TABLE 1i-i

COMPARISON OF SIX THEORIES WITH FIAT PLATE FRICTION DATA

ADIABATJI: -;27 POINTS COLD WALL: 230 POINTS

AUTHOR RMS ERROR ABS % ERROR RMS % ERROR ABS % ERROR

Eckert (1955) 12.4; 9.06 29.45 25.56

Moore (1962) 8.87 6.54 17.69 13.08

Sommer and 9- l0 7.77 23-55 20.14
Short (1955)

Spalding & 7.59 5-46 21.13 16.94
Cýi (194)

Van Eriest
#2 (1956b) 7.55 5.46 17.49 13.81

Present
Theory, 7.80 5-26 14.31 11.28
Eqn. (1-37)

Note: P.MS Error = 1 12)

MEAN ABS Error Y lei1

Data Source: Wnite dnd Christoph (1970).
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1.3.2 Data of Moretti and Kays

Next, the present method was compared to the data of

Moretti and Kays (1965). Their data were taken in a

rectangular duct which followed a system of rectangular

nozzles. This test section was designed to provide various

desired distributions of stream velocity and surface tempera-

ture. The velocities and heat transfer rates for these

experiments were low, so the boundary layers were essentially

constant property layers. However, the important effects

of wall temperature variation and freestream velocity

variation were present. In fact, predicting heat transfer

under varying freestreAm conditions, especially accelerat-

ing flows, has become of practical concern in such problems

as cooling of gas turbine blades and rocket nozzles.

Figure 1-4 shows the Stanton number as a function of

position along the rectangula- duct for a constant free-

stream velocity and for a sharp Cecrease in the wall :,empera-

ture. No data was given by More .ti ano Keys (1965) over the

first one-third of the flow field. Since the Stanton

number must be known at the starting point of integration of

equations (1-29) and (1-30), and since it was iesired to

predict the effect of the wall temperature decrease which

occurred in the firsk one-third of the flow field, equation-.

(1-29) and (1-30) we-e integrated forward and backward from

the first data poinc. Skin friction coefficients were not

given by Moretti and Kays, so the starting value of k was
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chosen such -hat - 0.< c•. The curve-fit wall tempera-

ture distribution was chosen to be of the form

= - a - b cos -(y(x*-x*)/c (1-39)

where (a,b,c) were fitted constants and x* was the x*

position where the wall temperature change started. The

present theory and the digital computer finite difference

method of Herring and Mellor (19%) are compared to the

data in Figure 1-4. Agreement by both methods is excellent.

The second Stanton number distribution measured by

Moretti and Kays consisted of a wall temperature change plus

an accelerating freestream velocity. Again, the wall

temperature distribution was fitted by equation (1-39),

but the freestream velocity distribution was fitted by a

polynomial. The present method and the method of Herring

and Mellor are compared with the data in Figure 1-5. Once

again both methods accurately predict the data. A more

severe test of the present method, and of the method of

Herring and Mellor, is the steep favorable pressure

gradient as given by Moretti and Kays' data in Figure 1-6.

If one believes in a constant Reynolds analogy factor, one

would cxpect an increase in the Stanton number or at most a

c')nstant or slightly decreasing Stanton number. As seen in

Figure 1-6, the Stanton number decreases considerably.

Both the present theory and the method of Herring and Mellor
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qualitatively predict this decrease. However, neither the

Dresent method nor the method of Herring and Mellor are

able to fully recover after the favorable pressure gradient

has ended - the present method doing somewhat better than

the method of Herring and Mellor.

The effect of an adverse pressure gradient on the

Stanton number is shoun in Figure 1-7. There is a notice-

able difference between the present method and the method

of Herring and Mellor toward the end of the flow region.

The present method shows a slight increase in the Stanton

number, whereas Herring and Mellor show a slight decrease.

The Jata of Moretti and Kays remain approximately constant

and are in reasonable agreement with either theory.

l.LL Conclusion

The purpose of this chapter was to develop a simple

and accurate method for analyzing heat transfer and skin fric-

tion in two-dimensional, compressible turbulent boundary

layers. This method uses law-of-the-wall velocity and

temperature correlations which include pressure graident,

heat transfer, and compressibility effects. After integrat-

ing the continuity, momentum, and energy equations across

the boundary layer, two coupled differential equations

result which have as their dependent variables the skin

friction coefficient and the Stanton number. Contrary to

the von Karman technique, integral thicknesses anJ shape



factors are not used. The present heat transfer analysis,

which is for arbitrary freestream velocity and wall

temperature distributions, compares favorably with the data

of Moretti and Kays (1965) and is as accurate as the

sophisticated finite difference technique of Herring and

Mellor (1968).
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Chapter Two

Axisymmetric Compressible Flow

2.1 Introduction

In this chapter, our basic approach is applied to

derive a method for computing skir friction in a thick

axisymmetric, compressible turbulent boundary layer. The

analysis is restricted t,. steady flow and a perfect gas is

assumed for convenience. The freestream Mach number and

pressure gradient may be arbitrarily large and variable.

Nonadiabatic wall temperature is allowable, but the

variations should be "modest", that is, the streamwise

derivative of wall temper-cure is neglected. The tempera-

ture is eliminated in favor of velocity through the Crocco

approximation. It has already been shown that this

simplification has little effect on the accuracy of skin

friction computation (White and Christoph 1972).

The transverse curvature effect is introduced through

a coordinate change suggested by Rao (1967). The resulting

differential equation for skin friction (Eq. 2-25) is thus

valid for arbitrarily large ratios of the boundary layer

thickness to the body radius.

Rao's transformation was used by White (1972) to

compute the skin friction in turbulent incompressible flow

past a long cylinder of constant radius. The basic results

of that paper can be summarized as two formulas for turbu-
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lent incompressible skin friction on very long cylinders:
r 04 R /

0.0015 + 0.20 + 0.016 (x/ro) 0 x (2-1)

C = 0.0015 + 0.30 + 0.015 (L/ro) 0) 4 0 1/3

Here ro in the cylinder radius, x is the axial distance

from the leading edge, and ?x = U x/!, is the local Reynolds

number for an assumed constant freestream velocity Uo. 0 Me

quantity CD is the total friction drag coefficient on a

cylinder of length L. EquatVins (2-1) are accurate to + 5%
over the entire turbulent flow range (106<R. < 109) and for

cylinder lengths up to (L/r) 0. Similar results will

be obtained here for compressible flow along a cylinder.

2.2 The Axisymmetric Law-of-the-Wall

In order to use the rresent me-hod, it is necessary to

have a realistic expression for the law-of-the-wall in a

thick axisymmetric boundary layer. This law differs

considerably from the two-dimensional law because of the

effect of the radial variable in the moment.um equation.

With reference to Figure 2-1, let the body radius be r o(x).

Within the sublayer, both the convective acceleration and

the pressure gradient terms in the momentum equation are

negligible. The equation reduces to:
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=(2-2)or: r = ro Sw constantA r %w •"

With T thus approximated by the viscous stress only, we may

integrate Eqn. (2-2) to obtain an approximate velocity

profile in the sublayer:

Lw u" ro0  w ln(r/r 0 ) (2-3)

If we now define the shear velocity ue such that rw = Pw u*2

Eqn. (2-3) may be rewritten in law-of-the-wail form:

+ r+ ln(r/rt) (SUBLAYER) (2-4)
0 +

where u =u/u* and rU pwu*ro0 /w. Equation (2-4) is in

marked contrast to the two-dimensional sublayer, for which

Figure 2.1. DEFINITION SKEITCH ILLUSTRATING COORDINATES

FOR AXISY.METRIC BOUNDARY LAYER FLOW.
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+ + +
u simply equals y , as in Chapter 1. Since y correlates

the entire wall region in two-dimensional flow, it was

suggested by Rao (1967) that the variable ro0 ln(r/ro) in

Eqn. (2-4) would similarly correlate an axisymmetric flow.

Thus Rao's hypothesis for incompressible axisymmetric flow

is that

u fcn(Y), where Y = r0 in(r/ro) ) (2-5)

Equation (2-4) would hold in the sublayer, while the loga-

ritIhmic overlap layer would be characterized by the relation

U i in(Y+) + B ( - 0.40, B 5.5) (2-6)

Rao (1967) and later White (1972) showed that Eqn. (2-6)

is an excellent approximation for P wide variety of thick

axisymmetric boundary layers. As the boundary layer becomes

thicker, this axisymmetric wall law becomes valid across

the entire boundary layer, that is, the outer or "wake"

layer becomes vanishingly small.

Note that Eqn. (2-6) is consistent with a turbulent

eddy viscosity c and mixing length L given by

Sp2 Y (r/r) - cos(a) , (2-7)

or t = •Y (r/r)1/2r0

where a = tan-1 (dro/dx). For this report, we shall take
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So 00, that is, we neglect the slope of the bod;' and take,

approximately, r = r0 + y. :he error is negligible except

near the stagnation point, which does not concern us. Since

Y as defined by Eqn. "2-5) is esaller than y, k as defined

by Eqn. (2-7) is smaller than its two-dimensional equivalent

I = Ky, the physical explanation being that a cylinder has

less ability to create 'urbulent shear than a plane surface.

Equation (2-7) may be used to derive a law-of-the-wall

for compressible flow with pressure gradient. As in the

two-dimensional case (White and Christoph 1971), we neglect

the convective a*celeration, and the axisymmetric streamwi:ie

momentum equation becomes

dP e_
r r.j - 0 (2-8)

Integrating from the wall (r=r ) outward, we have:

o de (r2  ro) (2-9)

This may be integrated again by assuming that viscous shear

is negligiblc and that T = £ (Au/Ay), where c is given by

Eqn. (2-7). Substituting for . and rearranging in terms of

law-cf-the-wall variables, we obtain:

du 1 1()I/2 " + a 2Y +r-'
+ y+ o(e 0 1)

(2-10)

where a = dPe

w
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The pressure gradient parameter a is the same quantity

which appeared in previous analyses for two-dimensional

flew (Chapter I and Wh. te 1969).

Equation (2-10) can be integrated for the velocity

profile u +(Y+) if we make an assumption about the density

variation. Since we are concerned only with predicting

skin friction, we assume a perfect gas,

p = p R T, or: pw/p-T/T . (2-11)

2
plus a Crocco approximation, T 1- a + b u + c u , which may

be rewritten in terms of wall variables as follows:

+ +2

T/T 1+ u -+ , (u-12)

where 5 and y are the same parameters used in previous

work (White and Christoph 1970, 1972):

13 = qwu/(TwkwU*) = heat transfer parameter;

(2-13)

Y = r u, 2 /(2c pTw ) = compressibility parameter.

Equations (2-10) and (2-12) may now be combined and integrat-

ed to obtain the desired lpw-of-the-wall u+(Y+,a,'3,y). Of

particular interest is a closed form which can be obtained

for the special case (a=O,B=O):

1 si "ln(Y+/y+) (2-14)u(Y+'O0'0'Y) = in-

4 

I

where we take = 0.1108 so that the formula reduces in the

limit of large radius to the two-dimensional law-of-the-wall.
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Equation (2-14) corresponds to supersonic adiabatic flow

along a cylinder, for which experimental thick boundary

layer data is available (Richmond 1957).

Some velocity profiles obtained from integrating

Eqn. (2-10) are shown in Figure 2-2. The effect is generally

the same as in the two-dimensional flow study (White and

Christoph 1970), with positive a (adverse pressure gradient)

raising the curves above the incompressible log law and y

(the compressibility effect) tending to lower the curves.

Note that the parameter r+ has no effect on the curves

unless a is finite.

2.3 Derivation of the Besie Differential Equation

We now assume that the compressible law-of-the-wall

for a thick axisymaetric turbulent boundary layer is known

as the integrated combination of Equations (2-10) and (2-12):

++ + 1 1 2

0 (2-15)
+ + +.-:-F1 -ro (1- e2Y /ro) +

This relation, if accepted as a reasonable approximation

across the entire boundary layer, provides closure to the

problem of computing the wall shear stress on a body of

revolution. That is, we can now derive a single different-

ial equation for Cf(x) under arbitrary flow conditions.

The boundary layer equations for compressible, axi-

symmetric, turbulent boundary layer flow are given by, for
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example, Herring and Mellor (1968):

a) Continuity:

I(pur) + =(pvr) 0 (2-16)

b) Momentum:

pur • - - r e +

(2-17)
Y(rT)

c) Energy:
hh

"h° + pvr = r(q + (2-18)

where the notation is the same as in Figure 2-1. As in

Chapter 1, the quantity ho = h + u 2/2 is the stagnation

enthalpy. Now in fact Eqn. (2-16), although included for

completeness, is not needed here, since the temperature relates

directly to velocity through the Crocco approximation,

Eqn. (2-12). As mentioned, the effect of this simplification

upon skin friction is slight, but knowledge of the ýtanton

number distribution is lost. If desired, one could extend

the temperature wall law technique of Chapter 1 to this axi-

symmetric case for computing wall heat transfer.

The continuity relation (2-16) is satisfied identically

by defining an axisymmetric stream function i. such that:
=pur ; = - pv r (2-19)

Y p u r p vr
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Since p, u, r, and y are each related to wall variables, it

fellows from the first of Eqns. (2-19) that # itself is a

law-of-the-wall xariable:

2 U"+ +

t/v-wro =.L P dY+ fcnFY ,a,.,13r v (2-20)
0 Pw ro

This fact is important in computing the velocity v from the

second of Eqns. (2-19). Utilizing wall law variables

wherever possible, the momentum relation, Eqn. (2-17), now

becomes:

p u+ Ž•(v•u+) - •.k -.,, Ž•( xu+) = - r -
A 'Iw- ~y+

(2-21)

Vw AV

where ui (Tp, is the wall friction velocity. The y+

derivatives are related to Rao's variable v+ through the

relation

A % • (2-22)•y+ r o 0 ;y+•

which follows from Eqn. (2-5). The x derivatives must be

handled by the chain rule, since each of the parameters

(a,,.Y, ro) in the law-of-tne-wall is a function of x.

Thus we substitute

2týj, + 2-a ._ + Z1 XL
%x ;x + + x (2-23 x

+ (2-23)
+ •r0

•x
rO

i m mm • • i m N mm ~ • mmnM • maM mm • mm iI i I .41•



In carrying out the partial derivatives in Eqn. (2-23), we

rctain our previous approximation (White and Christoph 1970,

?972) of neglecting the derivatives with respect to x of

j -w ,LL'0, and qw wherever they appear in ,5, -y , etc. It

is felt that these terms have only a small effect on wall

skin friction.

It remains only to carry out our basic integral

procedure, namely, combining Eqns. (2.-21, 22, 23) and inte-

grating the entire equation with respect to Y+ across the

boundary layer from (Y_ = 0, ' = rw) to (Y+ = Y +,r = 0).

The result is a single first order differential equation for

the wall friction velocity u*(x). It is convenient to

define dimensionless variables as in Chapter 1:

= "2- f ; x* = x/L ; V = Ue(x)/Uo , (2-24)

where Cf = 2¶/(PeeU), and L and Uo are suitable reference

values. In terms of these variables, the final integral

momentum equation becomes

d"x*(A - 3aA2 ) + V VX(F - A1 ) - .1 A2 (1!V)''

1 (2-25)

0

1 12
where RL = (%L/ve)("r a)(T/T) and F =

2 PY-+/r+
r0(e e -
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Equation (2-25) is the central result of this chapter - a

first order ordinary differential equation for X(x*),

subject only to some assumed initial condition X(X*0) and

known flow conditions U (x), T (x), Tw(x), ro(x), and Me(X).

The functions (AV, A2 , A.) arise from the integration

across the boundary layer and are defined as follows:

Ye = (T e/TlXp(2Y /ro) r u+2 - Ou + 6u-+ 2Y u + ;)
A~R, 2/w Y

+ au • + r ayaY+ dY+ (2-26)11wr--' Ii "w - wro ay •Y+

Ye ++ + + al1
A- t exp(2:+/ro) U+ (127)2 T . ; a W r ( 2- 2 7 )

+Y+ +

1 (u+/Ti)exp'2Y+/r+) r(u+) jdY$
3 o Vwo NO(2-28)

where r()= (Y+ -+ r) -y+ + r0

Is
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In order for Eqn. (2-25) to be viable, it is necessary to

have analytic approximations for these coefficient functions.

After extensive numerical computation of Eqns. (2-.26, 27,

28), using Eqn. (2-15) for the wall law, we offer the

following curve-fit approximations:

A T A3 E=•.0 expf3 (I4 -+ 0.2 S+001 2'
A1  2 " (2-29)

where S exp(O.4A /A)/r+ ,
0

+ =,
ro RL%/A L)

= 1 r+++
r 2-- 0 {exp(2Ye/ro) -+ )

A- 0.066' expl 0.84 x + 0.2 S + 0.0018 s 2  (2-30)

A- A (i+0.2 Q)

and where

Ye 0.1108 exp( 0.4C - 2.2 Q2 /3) , (2-31)

where I = sin-l1 •(2vu+- 1)/(t2+ 4-)1/2}

Equation (2-31) is a curve-.'it to the law-of-the-wall itself,

Eqn.(2-15), and Y+ is needed to evaluate the pressure gradiente

parameter Q above. Note that, in the limit of very large
+r° Q approaches (rt+), which is the incompressible two-

dimensional parameter originally used by White (1969).
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The parameter "A" in these formulas accounts for the

combined effect of well temperature and Mach number, as

was done in White and Christoph (1972). It is the same

parameter defined in a flat plate analysis by van Lriest

(1956):

A = (TaT - 1) /Fsin- (a/c) + sin-l(b/c)1 , (2-32)

where a = (Taw+Tw)/Te - 2 ; b = (Taw -Tw)/Te ;

SF(Ta+Tw)/Tel' - 4Tw/Te

Values of A for various Mach numbers and wall temperature

ratios are shown in Figure 2-3. Note that the incompressible

adiabatic limit is A = 1.

2.4 Comparison with Experiment

Equation (2-25) may be used to compute the turbulent

skin friction distribution Cf(x) = 2/i2 (x) along a body of

revolution in arbitrary subsonic or supersonic flow, provid-

ing only that variations in wall temperature are not too

great. A starting value )>o(x=Xo) is needed; if the

computation is started at the transition point, the value

S= 20 is recommended. The solution of (2-25) may beo

continued downstream until the separation point (if any) is

predicted to occur when the coefficient (Ai-3aA2 ) vanishes.

We now consider three applications: a) flow along a

slender cylinder; b) supersonic attached flow past a cone;
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Figure 2.3. THE COMPRESSIBILITY AND WALL

TEMPERATURE PARAMETER A, FROM EQN.(2-32).

46



and c) supersonir- :-ow pa!t slender body of revolution.

2.4.1 Compressible Flow Along a Slender ýylinder

Tne application of the p.resent theory is to consider

the effect of compressibility and transverse curvature with

no pressure gradient. A cylind!r has r° = constant and, to

excellent approximation, Ue = U = constant. Equation (2-25)

reduces to:

Ad,
A1 d-* = . , (2-33)

which may be separated and integrated for a direct relation

between skin friction and local Reynolds number:

1/2 1
"" ' R Al(),O,F,,v,ro) di(2-34)

x0

With zero pressure gradient, -he curve-fit approximation

to A1 is:

A 1- 8.0 exp. (0.4.8 + 0.0018 Z')1 , (2-35)
L J

where Z = exr(O.; 0.+,A/r+
0

Further, ro is directly related to A and the radius Reynolds

number Ra = U ro/Ve, as follows:R. eo e

+ _112
r h/ \(A/e)(TTe) 1 (2-36)

Since R is constant for the cylinder, Eqrs. (2-35,36. ma-,

be substituted into Fan. (2-3'4) and the Integration ccr-4ed
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out for the desired relation Rx (X), or better, its inverse

Cf = Cf(RxRa). As an example, the computed skin friction

on an adiabatic cylinder at a Mach number Me = 5 is shown

in Figure 2-4. It is seen that there are substantial

transverse curvature effects which raise the skin friction

over its flat plate value. As Ra becomes very large, which

is equivalent to the cylinder being very short, the flat

plate skin friction is approached from above.

Since the integral in Eqn. (2-34) cannot be found in

closed foi.i. it is appropriate to find a curve-fit formula

for the results, in the spirit of the correlations (2-1)

proposed for incompressible flow. It was found that the

flat plate formula of White rind Christoph (1972) could be

generalized to include the effect of x/ro = Rx IR as

follows:
1

Cf o.455/1[A (b R 'ew (Te/T A) (2-37)

where b C 0.06/fl + O.025(x/ro )6/7]
L~ 0

This formula is valid with accuracy to +iOC, over the entire

turbulent Reynolds number range (105-109) and for Mach

numbers from zero to ten. The slenderness ratio (x/ro) may

be as high as 10; note that the formula predicts a roughly

5increase in skin friction for (x/rt) as low as ten. For

very small (x/r 0 ), the formula reduces to the compressible

flat plate formula, Equation (24) of White and Christoph

(1972).
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Equations (2-•) or (2-37) may be compared with

experimental data of Richmond k1957) for supersonic

turbulent flow past long cylinders. Richmond generated a

supersonic flow at M 5.8 past three cylinders: ro = 0.012,

0.032, and 0.125 inches, respectively. For the largest

cylinder (0.125"), skin friction was measured with a floating

element balance for one condition (Ra = 20,400) and was

estimated from the velocity profiles for the other two

cylinders. The authors attempted an alternate skin

friction determination, using a sort of axisymetric

"Clauser-plot" which may be inferred from our postulated

law-of-the-wall, Eqn. (2-15). Since the cylinders are

assumed adiabatic and the pressure gradient is zero (a=f=O),

Eqn. (2-15) may be integrated in closed form to give the

following expression:

u+(Y+,0,0,v,'o - 1 d ii In(Y+/Y) , (2-38)

where = 0.1108 -o match with the incompressible log law

in the limit. By introducing -he definition of v from

Eqn. (2-13) and rearranging, we obtain an equivalent

logarithmic law:

i lrrYiO.1N) Y where a = U sin-1 (U/U•/u¢ •- 'r (/r)
(2-39)

and where U = (2c 'Tr )I/2
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A FREESTREAM MACHl NUMBER OF 5 FOR VARIOUS VALUES

OF R a= U r /v ,COMPUTED~ FROM EQUATION (2-34).
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This relation shows that a plot of the "reduced" velocity

u versus Rao's variable Y4 should be semi-logarithmic and

follo-i the incompressible law. Further, if the velocity

profile u(y) is known, one may use Eqn. (2-39) to infer the

friction velocity u* and h-ence C f itself. That is, if we

eliminate uL in favor of Cf. Eqn. (2-39) may be rewritten

as follows:

rc 7= (C-4o

where r = (5/Ue)(Te/Tw) and R =a tn(r/ro)

(%e/Uw)(Te/Tw)1/2

Equation (2-40) may be plotted with C, as a par i.eter, as

shown in Figure 2-5. When data for r versus T is placed or.

this chart, it should possess a logarithmic overlap layer

from which one can Infer C, by interpolating between the

plotted parametric lines. This has been done in Figure 2-5

for four supersonic cylindrical profiles given by Richmond

(1957). Note that all profiles demonstrate the proper

slope and behavior and thus substantiate the present law-of-

the-wall approach. In all four cases, the inferred Cf is

lower than that reported by Richmond (1957). Table 2.1

summarizes the skin friction data and compares with two

theories: the more "exact' integral computation of Eqn. (2-34,

and the curve-fit formul of Eqn. (2-37). Also included for

comparison is a flit plate computation for Rx in the same
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Figure 2.5. SKIN FRICTION DETERMINATION FOR SUPERSONIC FLOW

ALONG A SLENDER CYLINDER BY A MODIFIED AXISYMMETRIC

CLAUSER-PLOT (EQ. 2-40).
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range. Note tnat transverse curvature has increased cf

by at least 40% to as much as 100%. The present theory

seems in good agreement, falling between the two skin

friction estimates (Richmorid and the "'Clauser-plot"). To

the author's knowledge, no other theory, whether integral

or finite difference In nature, has been applied to these

important thick axisymmetric supersonic boundary layer

experiments. -4ichmond (1957) also reported low speed

friction and velocity profile measurements along slender

cylinders; these were analyzed in the incompressible theory

of White (1972).

2.4.2 Supersonic Attached Flow Past a Cone

A classic problem in the literature is that of super-

sonic flow past i cone at zero incidence. If the resAiting

shock wave is attached to the cone vertex, the freestream

flow along the cone surface is approximately constant

velocity (ax = 0). This is somewhat analogous to the

cylinder case of the previous example, except that here the

surface radius r0 varies. If x is along the cone generators,

we have

ro x sin , (2-41)

where 0 is the cone half-angle. It is of interest to try

and relate the cone skin friction to an eaulvalent flat

plate c- cylinder at the same Reynolds number RX. Accord.a-'r
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to the classic turbulent analysis by van Driest (1952),

C f at position Rx on the cone is equal to -f on a flat

plate at position (Rx/2). Thus, for equal Rx, the cone

skin friction is 10-15% higher than the plPte C f. This

analysis of course does not account for boundary layei

thickness effects, which the present theory includes as
+

the (r ) effect on tha law-of-the-wall. With U, = constant,
0

Eqn. (2-25) reduces forcone flow to:

dr
A1 dx* +A 3 - 7 (-2

and, since T is constant, (/ro )(dr 0/dX*) = "/x* from

Eon. (2- 2 1). If transverse curvature is important, i.e.

if the boundary layer is thick compared to the cone radius,

then A and A depend upon r+ (x,x*) and the variables are1 3 o

not separable in Eqn. (2-42). However, if we assume a

thin boundary layer (large r+), then our curve-fit

approximations give:

A1 , 1 - a e (a -. O, b ... 48.A)

(2-43)

:'or this case, Eqn. (2-42) has a closed form solution:

i _b R, x

which may be compa-ed to the analogous solution for flat

plate flow, Eqn. (2-37) or (1-36):
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-w -

Inx x,*/a (2-46)

By comparing (2-44) and (2-45), one may deduce a first-

order turbulent "c .ne rule":

C (at RX) = Of (at (/FI+0.96/A) (2-46)
fcone plate

This may be compared with the classic cone rule developed

by van Driest (1952):

C, (Rx) = Cf ( RX/2) (47)Scone plate

From Figure 2-3, A - 1.0 at low Mach numbers, so that the

correction factor for Reynolds number equals 1.96 approxi-

mately, or very close to van Driest's factor of 2.0. A

later analysis by Tetervin (1969) gives a factor of

(2.0 + 1/N), where N is the exponent in an assumed (,/Nth)

Dower-law relation between Cif and momentum thickness

[ Reynolds number. Si~ice N is of the order of 5 to 9,

increasing with -Reyn~olds number and Mach number, Tetervin's

factor is also about two. Figure 2-e-.a sh.ows values of

the ratio of cone to plate friction coefficient as

calculated from Eqn. (2-46). Thne predicted increase in .

cone fricýýIon is of the order of 5 to 15%, being higher

at low Reynolds numbers.

in fact, howeer, neither Eqn. (2-46) nor the van

Driest or Tetervin analysis is accurate for small cone
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Figure 2.6. ILLUSTRATION OF THE TURBULENT CONE RULE.
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angles, because of the transverse curvature effect

(large 6/ro). That is, a numerical or graphical solution

of Eqn.(2-42), using the actual formulas fcr A and A.3 frcm

Eqns.(2-29,31), shows a further increase in cone skin friction

at the smaller cone angles. These numerical solutions are

illustrated in Figure 2.6.b for a freestream Mach number of

2.0 along the cone surface. Thus transverse curvature adds

an additional 10 to 30% to the skin friction, and only the

thicker cones (20° to 450 half angle) approximate the first

order cone rule above (2-46,47). By analogy with the cylinder

analysis (Eqn.2-37), the relevant transverse curvature

parameter is (x!r 0 ) = csc(cf) for a cone. Hence the numerical

solutions in Figure 2.6.b may be correlat-d into the following

formula for constant pressure (attached) flow along a cone:

Cf(cone) 2 24 .455 (i -- l (2-48)
A 2n11b F i( T/T" (I4e/9w )/A

e -l

where b = 0.06(1 + 0.96/A)- (1 + 0.03 csc T)-i.

This formula ir- accurate to about +_% over the complete

supersonic turbulent cone flow range, including constant

nonediabatic wall temperature, which is accounted for by

the van Driest parameter A in the formula (Eon.2-32).
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2.4.3 Supersonic Flow with Pressure Gradient:

For 11ow past a general body of revolution, the complete

differential equation for skin friction, Eqn.(2-25), should

be used, since a and r 0= r (x). In one sense, these

effects are mutually exclusive, because if pressure gradients

are important, transverse curvature is probably not important,

and vice versa. That, is, only a slender body can have large

(6/ro), but a slender body cannot have large pressure gradients.

However, the shape effect term (A3/r )(dro/dx*) is nearly

always important.

We give here a tyvpical solution of the general theory

by comparing Eqn.(2-25) with the skin friction measurements

of Allen (1970) for supersonic flow past a so-called Haack-

Adams body of revolution, shown to scale in Figure 2.7. The

shape of the body is given by the following formula:

r /rmax = 0.70(1_t2) o.16934 cos- t + t(l-t 2 )/2 1/2

where t = (1 - 2Z/L). (2-49)

Note that Z is the axial, not the surface, coordinate (see

Figure 2.1). Allen (1970) tes4eid a wind tunnel model with

L = 36 inches and r 1.3- !. inches. Skin friction at seven

stations was measured with a Preston tube and also estimated

by 1) the 3aronti-Libby law; and 2) the Fent-r-Stalmach law.

The upstream MYcl number was varied from 2.5 to 4.5, and



the example shown (M. = 2.96) is typical of both the data

and the theory. With L = 36 inches, the Reynolds number RL

6
in Eqn.(2-25) was equal to 3.OxlO6. The freestream Mach

number distribution Me (x) is shown, and the velocity

distribution is of a similar shape and was curve-fit by

the expression

V(x*) -" 1 + 0.156(t - t 2 ) , t = x* - 0.139. (2-50)

Figure 2.7 shows three different analytical estimates:

1) the exact theory, Eqn.(2-25); 2) a flat plate theory

based on local Rx, Eqn.(1-36); and 3) a long cylinder

theory, Eqn.(2-37), based on local Rx and r 0 (x). It is

seen that the cylinder and flat plate formulas give an

estimate of the average skin friction on the body. The

difference between these two is about 5%, which represents
the transverse curvature effect. The exact theory is in

excellent agreement with the data over the entire body.

The higher values of Cf (compared to a flat plate) at the

front of the body are due to roughly equal contributions

from I) the term (A3 /ro)(dro/dx*); and 2) the favorable

pressure gradient. Similarly, the lower values at the rear

are due to 1) a change in sign of (dr 0 /dx*); and 2) the

adverse pressure gradient. The same excellent agreement

with experiment w•s found for the other three conditions

(M = 2.5, 3.95, 4.5) investigated by Allen (1970).
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3.2
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Figure 2.7. COMPARISON OF THEORY AND EXPERIMENT FOR

SUPERSONIC FLOW PAST A BODY OF REVOLUTION AFTER ALLEN (1970).
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2.5 Summary

This chapter has presented a complete theory for the

computation of turbulent skin friction in compressible

axisymmetric flow past arbitrary bodies of revolution. The

approach leads to a single first order ordinary differential

equation, Eqn. (2-25), for C.,.(; ) and accounts for supersonic
±

flow, nonadiabatic wall temperatuie, mad extremely thick

boundary layers, where a transverse curvature correction is

necessary. Applircations to cylinder flow, cone flow, and

flow past a pointed body of revolution all show good

agreement with experiment. It is therefore thought that

the present theory has no significant deficiencies. Siince

this theory is also apparently the simplest comparable

analysis to be found in the literature, we therefore

recommend it to engineers for general usage.
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Thapter Three

The Prediction of Three Dimensional Skin Friction

3.1 Introduction

The most common type of boundary layer encountered in

practice, and the most intractable from the standpoint of

analysis, is the three-dimensional turbulent boundary layer.

Reviews of the state of the art with respect to this impor-

tant class of flows have been given by Cooke and Hall (1962),

Joubert, Perry and Brown (1967) and more recently by Nash

and Patel (1972). Existing theories are few and seem unduly

complicated while available experimental data are usually

unreliable. Historically, two approaches have been used to

analyze three dimensional turbulent boundary layers; the

integral approach and the differential approach.

Typical of the integral approach is the work of Smith

(1966), and Cumpsty and Head (1967). These authors used two

momentum integral equations plus an auxiliary equation to

account for variations in the streamwise shape factor. They

extended Head's (1958) two-dimensional entrainment relation

to three dimensions but retained his two-dimensional empirical

functions.

Differential methods have been given by Bradshaw (1971)

and Nash (1969); both are extensions of the two-dimensional

method of Bradshaw et al (1967) which utilizes the turbulent

energy equation. The major difficulty with differential
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methods is in the specification of boundary conditions. For

a given domain, boundary conditions must be specified along

all surfaces where fluid is entering from the outside.

In this chapter a new integral method is developed

which greatly reduces the computational difficulties inherent

in the calculation of three dimensional skin friction. The

analysis results in two coupled, non linear partial differ-

ential equations with the skin friction coefficient and the

tangent of the angle between the total surface shear stress

vector and the shear stress vector in the freestream direction

as the only unknowns. This is accomplished by assuming

suitable "law-of-the-wall" velocity zorrelations for both

the freestream and cross flow directions and then inte-

grating the governing equations with respect to the law-of-

the-wall coordinate y+. The resulting partial differential

equations ray be easily solved by finite difference tech-

niques since they require initial data along only a single

curve.

Thus the new method is a compromise between the "classi-

cal" integral and differential techniques. It is much more

straight-forward and contains considerably less empirical

content than the former, and is computationally much

simpler than the latter.

At the present time this method is limited to incompress-

ible flows; however, extending it to account for compress-

ibility, heat transfer, and variable fluid properties should

b4 possible in view of chapter 1 of this report and the past
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efforts of White and Christoph (1970).

In order to discuss three-dimensional bounJary layer

flows it is most appropriate to work in a curvilinear

coordinate system composed, in part, of the projection of

the free streamlines onto the boundary surface. The

coordinate along :hese free streamline curves is designat-

ed as s, while the coordinate along the orthogonal

trajectoriez of the free streamlines, in the surface, is

designated as n, and the coordinate normal to the surface

is designated as y. Corresponding to these three coordinate

directions are the metric coefficients hl, h 2, and h 3, and

the mean velocity components u, w, and v respectively. For

simplicity, it shall be assumed that the curvature of the

bounding surface does not change abruptly and that the

boundary layer thickness is small compared with the principal

radii of curvature of the bounding surface, so that h3 may

be taken equal to unity and y becomes a simple distance

normal to the surface. As a consequence, h1 and h2 are

known functions of s anId n provided that the inviscid flow

over the surface is known. This coordinate system is shown

in Figure ?.J.

(h + (h W) + 0 (3-1)

the s component of the momentum equation
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h2 5n,w
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Figure 3.1. THREE-DIMENSIONAL BOUNDARY LAYER

COORDINATE SYSTEM WITH SKEWING

IN ONE DIRECTION ONLY.
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u • u w - +ua u + u w ý h l w h

hAP + u(3-2)

ph1 'A~ S P sAphI •s p •y

and the n component of the momentum equation

U4+ + ? w + uw >h2  u2 h I
K1s 2 :n AY 17 5s E nh 1 12 1 2

-1 p + .1 n (3-3)
p--2 A n p -Ay

In these equations rS and Tn represent total shearing

stresses a-nd include the effects of viscosity and Reynolds

szress, Since only incompressible flow is to be considered,

the energy eoua~ion is not needed.

The distinguishing feature of a three dimensional

boundary layer is crossflow (the w component of velocity)

and the resulting vector character of the surface shear

-,tress. Crossflow occurs when the freestream streamlines

are curved, which gives rise to an unbalanced centrifugal

pressure gradient in the boundary layer. Such crossflow

imposes a shear stress on the surface, normal to the free-

stream direction ('n), which skews the to-cal surface stress

vector. If the direction of curvature of the freestream

streamline is reversed, skewing ir two lateral directions

can occur in a single velocity profile. Typical velocity

profiles showing skewing in one and two directions are shown



y

W=0 e
e

tan-e

h 1 ,ls.u

h 2 1,n,w TOTAL SURFACE FREESTREAM

CROSSFLOW SHFAR VECTOR

Figure 3.2, THREE-DIMENSIONAL BOUNDARY LAYER

WITH BILATERA. SKEWING.
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tn Figures 3.1 and 3.2.

Since tht present method depends upon an apriori

specifica-ion of -velocity correlations in both the free-

stream direction and the crossflow direction it would seem

appropriate to discuss these in some detail.

-.2 Specification of Velocity Correlations

Ln general, integral techniques are insensitive to

de~ails of the assumed velocity correlations. However,

this does not mean that one can be completely cavalier in

their specification- In order to insure that the chosen

correlations incorporate the correct physical parameters,

consider that near the wall the force balances given by

equations (z-2) and (3-3) reduce to

and
= + 1 (3-5

"n nw K Y (3Fn)2

Assuming tha; the shear stress in the freestream

direction in a three-dimensional boundary layer may be

represented by the same eddy viscosity relation as for a

two dimensional boundary layer gives

_2 2,auauPK = Y I's-yF (3-6)

with von K~rman's constalnt K equal to 0.4. Nondimensional-
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izing equations (3-4) and (3-6) with respect to wall

quantities and solving for the velocity gradient gives

+ + 112.; u = ( I + a s y ) 3 -7 )

The pressure gradient parameter a. is defined by

where u* = (•swp)1/2 is the shear velocity in the free-

stream direction. Equations (3-7) and (3-8) are exactly

the same ,'esults as have been previously obtained by White

and Christoph (1972) for the two-dimensional case; except

that here a. includes the curvilinear scale factor h

Therefore, it will be assamed that the law-of-the-wall

co.relation for mlie streamwise vel( city ccmponent, in a

three-dimensional boundary layer (Eqn. z-7) does not differ

from the two-dimensional correlation '•is is a reasonable

assumption as has been pcinted out '- -, (1969) and others.

it would bp extremely attractive to carry through

3imilar arguments for the c-ossflow correlation. However,

this immediately leads to excessive comriication. The

reason is that ,thle simple eddy viscosity approximation of

equa+lon (3-6) does not appear adequate to desc-ibe the

crossflow profile. Instead one must invoke a coupled edey

viscosiLy expression such as suggested by Cousteix, Quemard

and Michel (1971).
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F F2-1 2, a•u, ;Bw(3

where F is a sublayer damping factor suggested by van Driest

(1956)

F = 1-exp _ 3 (, 2. (3-1

and
1 = 0.085 6 Tanh (3.-1)

Nondimensionaiizing and combining (3-5) and (3-9)

leads to

.•+ 
( 3-, , , +

nw 2wi•;h

a i n 3- 1 ;•n =n--ur F7Fn'

The sym.&ol stands for the tangent of the angle between

the zotal surface shear vector and the shear stress vector

in the freestream dtrection.

F.xpression (3-12) is obv! '-sly much too complicated t,,

be tractable as a crossflow ve-ocity correlation. Fortuna'--

an alternative exists in the simple hodograph models, which

often give a better representation of the crossflow velocitv

profile than does (3-12).

The earliest hodograph model was proposed by Prandtl
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(1946) who speculated that

w = u9(•) (3-14)

where g was a function such that g(O) = 1 and g(1) = 0. He

took g to be

g,6) - 1- 6 (3-15)

Mager (1951) suggested a more accurate form in which

g(Y) = (1- 2(3-16)

Recently, several more sophisticated hodograph models have

been proposed. Johnston (1957) represented the crossflow

velocity by a triangular hodograph such that

-e = 0 2ý-' U- < (3-17)

we P (1- -) ;-u > (IL) ;(3-
e e p

where (u/Ue)p corresponds to the apex of the triangie and is

given by

( (1 + ) (3-18)

Up Tan f

and Ue is the freestream velocity. Johnston's model is

sketched in Figure 3-3. This model has several shortcomings.

There are situations in which the outer region is not

adequately represented by a straight line and there are

situations ii which the apex of the triangle is not well
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Figure 3.3. SKETCH OF THE TRIANGULAR HODOGRAPH

APPROXIMATION, AFTER JOHNSTON (J 957). 2*
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defined. Also, he experimental determination of 0 is

very difficult due to the fact that the inner region of the

model actually corresponds to the viscous sub layer.

Eichelbrenner and Peube (1966) modeled the crossflow velocity

by a polynomial of the form

w = U P I ----,, I +u blu + ,u + e•)4u_
eF e- e IT e "e Ue

(3-Z-9)

where a,b,c,d,e are evaluated by using beiundary conditions

at the wall and at the outer edge of the boundary layer.

These constants are also extremely difficult to verify

experimentally. This model does, however, hare the

advantage of being able to predict the "S-shaped' crossflows

which pz-e discussed in Section 3.1 and observed experi-

mentally by Klinksiek and ?lerce (1970).

With these considerations in mind it was decided by

the authors to employ the hodograph model as proposed by

Mager (1951) in the form

U+ t+)(3-20)

This choice seemed a good compromise between complexity and

relative accuracy. In fact this correlation compares well

with some experimental data as shown in Figure 3-5. Until

such time as more reliable three-dimensional data become

available, and in particular profile data, the use of a more

sophisticated hodograph model does not seem warranted.
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•.3 The Method of Solution

In order to solve equations (3-1), (3-2), and (3-3)

they are first nondimensionalized using the shear velocity

in the freestream direction. The result is

a + U*w+
uu (u*u) t u*u+) + v )- 21 (U* +)

+ 4* W - 2 +2 ah, _ _
+UC u w* -I u*w+ W = ?1-p + * s

h17 h~i h . p. 1).s pV-

and

u+ + u+) + Z +

( ) (u•.+) + v - .+ (u*w")

u*2  u+w+ %h2 u* 2 u+2 'h1  ýj n
hl--• As hhh2  n Ph 62,

where the velocity v is determined from the continuity

equation:
6 +

v r a 1 , 1 u (hlUW)' +, ~ ~ ~ u _• u"+) +•7 u4+ dy+
~1 1

(3-23)

Expressions for the partial derivatives with respect to both

s and n are needed. Note that

+u fcn(y , aS) (3-24)

and

+ + +Iw =fcn(y, as 8, 6+) (3-25)

Therefore,
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+ ?k u •s +

'U+ S a

AI += = + 2s ai e a-+ 26 +w
A6 s ilk + W- -Y-+ 'F- s (3-27)

a~s s

plus similar expressions for the n derivatives. For the

purpose of skin friction calculations, it is convenient to

make the following non-dimensionalizations:
S+ ( 1 /f~i2" e UoL

= e U+s= ) , hL/L, h* = h/L RL =-

(2-28)

V = Ue(s,n)/Uo

where L is a reference length, and U is a refereince speed.

Then, from the definition of a

s + 1 (l/V) (3-29)

and

:as - 3 . ý I + 1 3 a2 (i/v) (3-30)
Anl _ s A1n ~ l~

The partial derivatives of 6+ with respect to s and n are

more difficult to compute. Equation (3-7) integrates

analytically to

+ =1 r)P n(j o+l~
u . 2(o-p + in ( ) .

(3-31'.
i r2(p-l) + ln ((3-31)).
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where
+ 1/2

At the edge of the boundary layer, equation (3-31) becomes

+- 1) + 1n(pr- UL )1 (3-32)
e 1 a(PY

where

Pb= (I + as

Differentiating equation (3-32) with respect to s and n

results in:

"6+- 1)1 r- p-Pp3 . (3-33)
=s ! 6as - 6 P6;s (-3

- asp6 a s 2p6 2 -

and a similar expression for the n derivative. Combining

equations (3-26), (3-27), (3-29), (3-30), and (3-33) gives:

+ UI + I
1u 1 • +u1

++

+u + 1 '1.1 1 'u+

vn -1n i (+3-3)
V • ~ •V77S

77i
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11 I ! • , [ !1I I I <1)

•, + 8-"+ + -- + K(z (p- A
R-s"= 'i•sL y 1 3• + iaP

+23a

- a(•P P +fl 6 J 1 •-X *Ly ay (3-36)
Ss S Ps L a y1J

+ -,:..+ ( 2P + 3+pn + . 2()

s__-. a 5 'p V = ••-•=p

•nW t1 cnr _~ 4

S S P5

a•. (s 1+PB _6 3p 2 ?n k S L •2

+ + 2 3 3 +

F" al•" 6, Dns•-

+ b5 -P6 +P6) ')w 1 AVf 1' (337)%

LCas s 2 P62

After seubztitutinZ the partie! derivatives, equations (3-34)

throu/h (3-37), into equnI.~ons (3-21) and (3-g2) and inte-
Arwtinj the r.zulting equrtiorns from y+ = 0 (+ = 'rw) to+

42m = + (' 0). L ne obtr ins

""- a

a. "- 62#+ VýW yW



1' kl V 2' ::V G(G1 -3aO 2 ) + G\T (x 25+-G1 ) -
1 

2 
-)+,

+ ( -3a G - XGG 2

(3-38)

x 4 4GL 2 1 1 1

E*R (-7) • G( RV i+-n) 7

x i ýI4t 5

12 12 ( 7Si (X 1
+1 1. (G 33 a G~G 4 -x~ G+ ~ l~

'. ý n '11 s--12 1 13' L

(3-39)

Equa*ti nTs- (3-38)' an (-39 are twh, 7n pd 15n

22

+ l 3  G I G
T2 i172

The G coefficients in equations (3-38) and (3-39) are

deflned ~in terms of quadratures over the velocity correlations

and various gradients of thc' velocity correlations. These

are ieb'ulated and evaluated ia appendix A.

Equations (3-38) an~d (3-39) are two, coupled, non-

linear, partial differential equations which have for

dependent variables only the skin friction coefficient and
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the tangent of the angle between the total surface shear

stress vector and the shear stress in the freestream

direction - no integral thicknesses need be calculated.

The inviscid flow solution is assumed known, a may bes

computed fr.. its definition, and 6+ may be computed from

equation (3-32). As should be the case, equation (3-38)

reduces to the incompressible, two-dimensional analysis
8 + 8

of White (1969) when - = 0, w = 0, and = h. .

If 1

3.4 Comparison with Experiment

-.4.3 The Rotating Disk Problem

A convenient starting point to test the validity of

any three-dimensional theory is the problem of a smooth

plane disk rotattng in an otherwise stationary fluid.

While axisymmetric, this problem exhibits the essential

feature of a three-dimensional flow, namely crossflow and

thb resulting veclor character of the surface shear stress.

The presenc theory has been applied to the rotating disk

problem in a paper by Lessmann and Christoph (1972) and

is discussed below.

The boundary layer equations, equations (3-1), (3-2)

and (3-3), may be reduced to those governing the boundary

layer flow on a rotating disk by identifying s with the

coordinate el and n with the coordinate r, both fixed in

space. The metric coefficients become h. = r and h2 = 1

and the equations reduce to
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r •- (rW) -- 0 (3-40)()y

ýu iu uw_1w •7 + v ý- + r p•gl(-l

and

;5W ;3 W ~ rW r.gu + v T•_T (--421wr• v y r F ;%r

All derivatives with respect to 9l have been eliminated

because of symmetry.

The boundary conditions on the equations are that at

the rotating plate v=w=O and u=-rlV. Here f, is the angular

velocity of the rotating disk, assumed counterclockwise

about the y axis. In the freestream u, v, and w as well as

the sh,-aring stresses are zero. As a consequence of this

(3-43)

For what follows, it will be convenient to transform

equations (3-41) and (3-42) so as to obtain more conven-

tional boundary conditions. Defining a new circumferential

velocity as

ut = u + rO (3-4Ls-)

the boundary conditions at the plate become u' tv=w=O and

.n the freestream v=w=-O while u' = rt. Using equation (3-44)

equations (C-41) vnd (3-42) become
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and

W 6- + ,, + 2Cu' - 1-2 _ (3-46)

Mager's crossflow velocity correlation, equation (3-20),

will be used and since a = 0,

+ y 55 (3-

will be used ror the streamwise velocity. Comparison of

these two velociz. correlations with the data of Chain and

Head (1969) is shown in Figures 3-4 and 3-5. The velocity

v is eliminated from equations (3-45) and (3-46) by the

continuity equation, and the resulting equations are non-

dimensionalized with respect to wall variables. For

convenience u* is related to the circumferential skin

friction coefficient by

;,,)1/2 rn0

4=(2; s =UT (3-48)

and r is non-dimensionalized by the relation

'n = r (n/ V) 1/2 (3f49)

Note that v is the square root of the radial Reynolds

nuwmber. in integrating the two momentum equations from

-I-" + +
y = to y = &', the shear velocity in the radial

direction, v* =(•/P) will appear. The shear velocity
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• is elimIrnated in -'evor of u* b- the expression

o "(3-so)

The result is

D- +. .-

n d d2 I

where

•2=• }•+ + +

S;-NY t6;-+ ) y )dy
0

(3-5-3
q5+ (0.61 5 239 x + 9.84)

+ +

D2 d--)dy+
o 0

C(7154)"

(3-55)= 86 1 (153 X -9.5)
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4-- . c - i 1II"I

+'r- = - - +-. - v+ d;+5 ' ". •," "C -

-( >,

4- +

(=)' w •'.i'-u - -4-- w~c*~ *-*S-a. -

C 0
d

r6~~- X,,..,-U d

This problem redu.:es to the consideratlcn of coupled
ord.nary differentla2 equations as a result of the fact that

the rotating disk is a twc-coorcinate pD-eblem.

The results of the r,:-esent ana.vsis cons-st o; Dre-

dictions, using equations (3-1) and (3-52), for the

circumferential skin friction coefficient c, and thc ratio

of the crc)ssflow shearing .- tress to the cir-cmferentia'

shear4ng str.ss, S. These are compared with experimentai

results in Figures 3-6 and 3-7. Fig•re 1-6 shows that the

present celculstion of c-- compares very favorably with the
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experimental cata and falls approximately halfway between

the rezults of 7ooper (1971) and von Karman (1946).

Cooper UZsEc a finite diffe'ence scheme based on the work

of Sm-ih and 'ebeci (19t6,197l), Figure 3-7 is reproduced

from the w-rk of Cha= ane Head (1969) and compares several

predic:ions for - with one measured value. Unfortunate -v,

'he zicer.ain-v asscciated with this single data point is

relqtively large. With this in mind, it can be seen that

th-r.t. theope,, as well as the entrainment method of

-hMr anu Head (i960), and the prediction of Banks and

3add (l•92) gi-'e plausible results. Both the present

ca3-culatlon and that of Cham and Head show a tendency tc

fall -with incregsing radial Reynolds number, while the

prediction of Banks and Gadd (1962) is for a constant value

of. -,oo.er .1-oi1) in, not concern himself with predicting

to-al she3r and hence no comparison with his work is possibl-

on This poin..

Since the rresent approach and the analyt.€ of von

KYr-an (-.ma) are intezýral methods it is informative to

con:i-der 'Vbo,!h thIe simi-arities and impo-tant differences

between these -wo works. The velocity correlations used

by von Kia"en are fin the present notation)

u = ,-y/I) (3-59)

and

w - eu(l-y,/) (3-6o)
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These are to be compared with equations (3-47) ana (3-20).

It is well known that the 1/7 power law gives a good

representation of fully turbulent jelocity profiles; at

leas-. for a limited range of Reynolds numaer. This fact

accounts for the relatively good agreement with the

circumferentia-t skin friction date. At the same time, the

crossflow correlation used by -...n Karman does not give. a

good representation of the radial velocity profile as is

shown in Fig,.re (3-8). Also, in order to get an exact

solution of his -quations. von Ka.can assumed P to be

con:-;tant and the bo-ndary layer thickness 5 proportional to

r These facts accowit for th.ý relatively poor pre-

diction of q = 0.162. In order to carry throug, the

calculation fcllowing von Karman, one must express the wall

shear stresses T and rrw as functions of P and 6. This

is in contrast to the piesent analysis in which the

dependent variables are a and the circumfe-ential skin

friction coefficient. No shear stress correlations are

necessary. One can carry cut von Kxrman's analysis retain-

ing the r dependence of @ and 6 and also consider the effect

cf replacing (3-60) with Mager's correlation. As is shown

in Figure 3-6, both of these lead to essentially the same

skir friction curve, which is somewhat low. The effects of

these changes on the prediction of 9 is more drastic as

shown in Figure 3-T. When one keeps the original velocity

correlatien but allows fo" r variation, the result is a
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curve wnich falls rapidly to an asy.p-0o-'c benavior

approaching e = 0.162. Using Mager's correlation with

von Karman's approach gives ;- prediction for O which agrees

closely with the present method for small Reynolds number

and becomes asymptotic to P = 0.217 for hige-er Reynolds

number. Apparently this difference is dae to the fact

that the logarithmic law-cf-t :e-wall properly accounts for

Reynolds number variation, while the 1/7 power law does not.

It should be pointed ou' that all calculations of o

in the present study assumed an initial xalue of a 0.228.

This initial value was chosen so as to generate a monatonic

curve for @ as a f-nction of r. it was found that perturbing

this initial condition caused the calculaticn to rapidly

converge to the curve shown in Figure 3-7.

3.4.2 Johnston's Swept, Forward-Facing Step

Johnston (1970) experimentally investigated the flow

over a two inch high rectengular step, swept at forty five

degrees to th-- main flow direction. While an example of

a fully three-dimensional situation, this flow is not

strictly a boundary layer due to the large variation of

pressure in the normal direction. For the purpose of the

present analysis the ;'.reestream" v± It, d1ist-ibition was

dzterzined by fitting a polynomial co Ž• ..... con's pressure

coefficient data. Three differ-rnt Luch distributions were
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considered, one corresponding to the wall pressure coefficient,

o:ne to rhe vertically averaged pressure coefficient, and

one assuming a constant "freestream" velocity. As expected,

use of the average pressure coefficient gave the best

results but none of the calculations agreed well with the

Bradshnw (1971) also analyzed Johnston's data using a

finite difference scheme. His calculations, using the wall

pressure clefficient, showed similar behavior to the present

Pesults. In irder to overcome this difficulty, Bradshaw

determined the local value of the "freestream" pressure

gradient from tte two-dimensional pressure coefficient

data given by" Johnston. With this additional complication

Bradshaw's final results agreed fairly well with the data

except in :rie region close to separation. In this context,

seDaration refers to the condition where the surface flow

in this "bounda-y layer" has become parallel to the step.

The present analysis follows directly from equations

(3-3d) and (3-39). Making the assumption that the swap

is infinite, and hence that all v&riations parallel to the

s tep are zero, relater derivatives in the s and n directions

by

SA
-2.- ---- (1-61)

Also the metric coefficients h1 and h 2 are equal to unity.

These simplifications result in two ordinary differential
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equations for X and 9 as functions of s* = s/L. The

characteristic length L is taken to be the distance from

the step to the initial point of the calculation, along

the "freestream line".

The results of this analysis are shown on Figures

3-9 and 3-10. Also, Bradshaw's finite difference

calculation is displayed for comparison. On Figure 3-9,

it can be seen that use of te vertically averaged pressure

coefficient gives good agreement with the ,kin friction

up to about s* = 0.8. The calculation using the wall

pressure coefficient is low while use of a constant free

stream velocity gives results which are much too high.

Bradshaw's results are also in good agreement bLt extend

as far as s* = 0.85. None of these predictions agree with

the measured separation, w. -ch occurs at about s* - 0.93.

Figure 3-10 shows a comparison between the present

theory and Johnston's data for P. Again the average

pressure gradient case gives the best agreement but

predicts separation too early. Bradshaw's calculation is

somewhat better but also shows early separation.

These results should not be construed as indicating

some intrinsic deficiency in the present theory, since this

flow is not truely a bcundary layer flow. Actuallj, in

order to accurately predict the swept step flow field one

should use the full Navier-Stokes equations and not the

boundary layer equations.

i -----4
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3.4.ý -ata of Francis and Pie-..e

Francis and Pierce (1967) meas;,: ad P, the tengent of

the angle between the total surface shear stre's vector and

the shear stress in the freestream ',=e.tion, in a rectan-

gular channel. T:h 10 inch wide chainnei consisted of a !E

inch straigh' inlet section followed by a curved section

of either a 55 inch centerline radius af curvature (referred

to as series 5) or a 25 inch centerline radius of curvature

(referred to as series 2) and a 48 inch straight discharge

section. Most of tle measurements were taken on the center-

line but a few of the measurements were taken 2 inches

either side of the centerline. The RevnoLds numbcr was

1.07+O.03xi0'J per foot for both series 5 and series 2.

The freestream velocity variation was about 0.3 percent per

foot, while the crossfioe velocity variation was from 30

to 54 percent per foot in the radial direction. This

experiment .•-ovides the possibility of examining effects

produced by a crossflow pressure gradient without the

influence of a strong pressure gradient in the freestream

flow direction.

Fdlja-ýions (3-38) and (3-39) are solved with the

following simt ifications:

a•s = 0, .*, -s=•-• '"2•-' -Y " W •' = '

(3-611 ,%aO-l.o - _ _

1 1 1
-:Y -T 0  5W hU ;%n R*
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where x*, y*, and I' are respectively the streamwis-e flow

direction, the direction normal to the streamwise flow

direction, and the radius of curvat-ure, al- =on-di-ension•.!-

ized with respect to the length of the channel. This

results in two coupled partial difLferential eauations for

2I and o as functions of x* and y*. 1- is assumed that

and a are known along some initial line x* - no side
C

boundary conditions need be known. The partial derivatives

occurring in these equations may be numerically approxixated

in a n'rmber of ways. For illustrative purposes, they were

calculated by forward di'ferences. Eackward or central

differt..ces couid have been used 4ust as earilv. Also,

if more accuracy is desired it Is possible to keep

correcting - and -w-ith their average values iteratively.

T-he results of these caluclations for the center streami-

line are compared to the measurec values of a end to the

skin friction as computed by Francis and Pierce uslrZ the

Ludwieg and Tillmann (1950) shear law, as shown in Figures

3-11, 3-12, 3-13, and 3-1,4. Agreement with tne data over

about the first half of both charonels is qui,.e good, but

then the theory and the data dive,-ge. The skian friction as

computed by the present theory is ,wer than that computed

by the IAdwieg and Tillmann law, and tha theoretical values

of P are considerably higher than the meas'ired valuerz. One

possible reason for these discrepancies is that Mager's

profile may not adequately represent Francis and Pierce's

data. Shanebrook and Hatch (1970) suggested a -more
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sophisticated family of hodograph models for crossflow

profiles. Their method extended Eichelbrenner's (1966)

polynomial representation by forcing consecutive higher

order derivatives to be zero at the wall and at the

boundary layer edge. This family is called the (pi,qj)

family of hodograph models where pi is the number of

consecutive zero derivatives at the wall beginning with

the ith derivative and qj is the number of consecutive

zero derivatives at the boundary layer edge beginning

with the Jth derivative. Besides containing many terms,

Shanebrook and Hatch's hodograph models also contain the

angle 0 that is used in Johnston's (1957) triangular

model, Figure 3-3. By the use of the momentun integral

equations and an entrainment equation, Shanebrook 'and

Hatch compared their hodograph model with Mager's velocity

correlation for Francis and Pierce's data. Shanebrook

and Hatch's model shows better agreement with the data,

but the same trends as the present theory, as seen in

Figures 3-12 and 2-14. However, Nash and Patel (1972)

showed that Mager's correlation was in excellent agreement

with the crossflow velocity data for Francis and Pierce's

experiment.

Therefore, it is felt that the disagreement between

the present theory and Francis and Pierce's data is not the

fault of the assumed crossflow velocity correlation. Rather,

it is believed, as Nash and Patel pointed out, that the
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boundar• layer in Francis and Pierce's curved channel was

dominated by the effects of comer flow at the 'Junction of

the side wails and the floor of the channel. These effects

were not accounted for in the present analysis.

3.4.4 Data of Klinksiek and Pierce

As is pointea out in the introduction to this chapter,

M-ger's velocity correlation is not capable of represent-

ing the so-called S-shaped crossflow velocity profiles,

Figure 3-2. However, it is .telieved that the present theory

will give. accurate results even if the crossflow velocity

profile is only grossly approximated; as long as 9 is well

predicted, and apparently Mager's correlation predicts 9

accurately. KLinksiek and Pierce (1970) conducted an

experiment in which they obtained S-shaped crossflow

velocity profiles. Their experiments were conducted in a

doubly curved channel of rectangular cross section. An

initial straig ) section of 78.7 ince :., was followed by a

60 degree bend with a 25 inch centerline radius of curvature.

This in turn was followed by a 12 inch straight section and

a 60 degree bend in the opposite direction with a 55 inch

centerline radius of curvature. The same equations (3-38)

and (3-39) tha* were used to compare with the data of

Francis and Pierce apply to tICis situation. The results are

shown in Figures 3-15 and 3-16. The theoretical values of

p are considerably above the data, presumably again because

of side wall influence. The S-shaped profiles were observed
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in the lat'i' cur:ed portion of the channel with the

inch centerline radius of curvature (starting at &.

inches in Figu-es 3-15 and 3-16). By this point in the

calcula;ion the theory considerably diverges from the data.

T--hnut no conclusion can be drawn about the general use of

Mager's cc;'relat.!on in situations where bilateral skewing

of tne crcssflow p0rofile is p "esent.

-.5 Summa.Y

Tne aDDroach to calculating three-dimensional skin

friction presented in this chapter seems to offer great

p-omise. it. is an integral method which utilizes "'law-

of-the-wall velocity correlations and results in two,

coupled, partial differential equations having the stream-

wise skin friction and the angle between the total surface

shear stret:s vector and the shear stress in the freestream

direction as -he aependent variables. This analysis

contains significartly less empiricism than "classical"

integral methods and is computationally much simpler than

currently availacle differential approaches.

An area requiring more study is the problem of

specifying a suitable crossflov, velocity correlation.

Mager's hodograph model was used here as it would seem to

offer the Gez- current compromise between accuracy and

complication. However, it is not capable of predicting

c•ossfl:w profiles vith reversed skewing; and this must
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be regarded as a deficiency for any generally applicable

theory. it is felt that the development of a more

accurate crossflow model must wait upon the avaiLlability of

more accurate profile data.

The approach developed here compares extremely well

with the rotating disk data of Chan and Head and with other

predictions of this flow. Th,! relatively poor performance

of the present method when compared to the data of -Johnston,

Francis and Pierce, and Klinksiek ana Plerce should not

be taken as an indication of any serious deficiency in the

theory. Johnston's swept step flow was not truly a

boundary layer due to the presence of a large vertical

pressure gradient and the Francis/Fierce and Klink-siek/

Pierce data sets we'e strongly influenced by channel c:rner

flows. Thus, serious evaluation of the present method must

await the availability of a clean set of experimental data

for a three-dimensional boundary layer flow. Such a set of

data should include direct measurements of skin friction in

both the freestream and crossflow directions as well an

accurate measurements of the pressure gradient along the

freestream line and velocity profile data.
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APPENDIX A

A~l. Tne coe-fficients H i for use in the heat transfer

differerntisl equations, Eons.(1-29,30), bre deflined as:

hi u+ g-;' +2YUa p au* t 2 a+3

G +T w w

r J2 ¶U 1 aU at )J +

o T+ -

6+ +2 U+a+ S au t

42 T+ T+a

__~ ~ uPaTf +T~r

T __ R- T+ ~u 2

4. yf - kT at ,S H! u - 22u

+y 4  ?t ;.+ R ? yu-;u y&'v

6 - 2-r+ ;a 21 jw c -T+~ -3 U
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6* + 1pT u+ aT+' 8PT W+ a* u2au

0 w

u - dy+

1 + + Bu+BT+ OPTr ZTT+ ao u+ 2 au +
H -- f0 -1PTu - PT • '* r-' + 211T ay÷ V" Y R ;F -S-o)

+ u+ Y u a* ) d

I•ne various partial derivatives which are needed in the above

expressions may be evaluated as follows:

+ ÷u + 8 y+ du+tz
H •f- [T~y + Cry f - T+ 2

S=0 0 11+ CE) 2] 2(I ÷ y+)

I ÷
S 0 2 T+ 0 4+ a+

e us+ my dua+ U+
- [ f 2u + du+

+r+ Ue - du+

0 + GY+
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-lm I w Imp - WWI-"-

DT+ u+

f e du

0 l+ay+

+ u +
3T fe 2 u+ du+ u 2

o e

D o U e + + +u(u u+ .  )+ .•.•=f K Y du -- + au =--u _{By++ 2ayy+ a+I.+ld,
(W 0 (I+/y T+51 2 5/2 0 u(I + ay+)2

I" e y+ du + _ + •: + + au • + •+
f C d -ru +. t u ft -2y( 1+0y i lw o (l+ay+.) 1 12 _T 5•25 4 -u fC. (1 ÷ a,+)

due Y d ++ .1+ _ _ _ __+ +_ au_+
f + a -+u+ + )(I.+ ) -Sduo4 O-Y + 1 2T 5 /2 7s• u f

+I a

Ane following are curve--it expressions for the Coefficients Hi

0.475 u+ (1 + 0.22 y u+2)H1 8.5 expf e- e
[1 + 0.i(ct6 /]( + 0.3jSu÷) }

e
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0.4 tu+ (I + 0.22 y u÷2)

H2 0.062 exD{ e 1 e
21 + 0.12(a6+) ] (1 + 3.3 Ru÷)

e

0.52 u (1 + 0.22 yU+ý)

H3 1C.O exD{ e e
[. + 0.08(a6+)1/2] (1 t 0.22

0.5 1+ (I + 0.32 yu- 2 )

Hl 4 2.5 exp{ e e

[I + 0.09(at6+) 2 ] (I + 0.3 8u+)
e

2 (0.7 + uOO y) u (0.492-3.78) U
H -0.2 y exp{ C } S-1 . ex{e }

(1 + 0.02(a6+) 1 / 2 ] 1-158 (1 + 0.(a+6 )1/2]

7 exp (._.6.3 + 400y) U

1 + (2000 y)7.6 rl + 0.03(e+)1 /21

0.435 u+ (1 + 35 vi )

H 0.051 exp{ e e
6[1 + 0.25(a6÷) X2]

(0.8 - 5 S) U+

- 0.14 8 exp{ e

[1 + 0.25(aS+)1/2]
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(0. q82-3.78) u+
H 4 3.5 8 exp{ e

7 1 - 158 [1 + 0.1(06+)1/2)

(0.46+260y- 36) u+

+ 10000. Y 7. exp{1 e
1 + e(3200 y) [1 + 0.05(ct+)1/2]

0.,,6 u +2 .33 2

H = 0.33 exp{ e e
(1 + (I + 0.25 Oue)

In order to use these curve-fit expressions, one first

evaluates a, 13, and y from their definitions, EqnE.(l-32),

and then evaluates 6 + from the two-dimt.'sional law-of-

the-wall, Eqn.(1-33). The only other parameter in the

formulas for H, is U+. which is directly related to

skin friction by the relation u-- X(Te/T )/ 2.
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A.2. The coefficients Gi for use in the three-dimensional

theory, Eqns.(3-3 8 , 39), are defined as follows:

G1 = +2 y

G 3 z U W+dyt
0

6 + u

G = f [+ - f dy+ +d

44-

G 2 I f [ - wi'9" f
0 s 0 s

+2 3

%6P6 P6 + P6  au Y V d 4. d 4

+ --:L f3 -+ I u1/

6 P6G• - 1(+ - + dy4] d+

wher P6 U+a /
+ 2 +
6 P+ y+ a,++ Y +

G 5 IF a d6yi ] dyýI y

6P • f f .5

0 0

-1412



mw -- - -U- -

+ + + ;u+ + /

Ty+ dy. dy

ou + +
f[ LW+ + f u dv I dv+

U+ 3 - -, au dy]3

o v 0 3s

-2 3
+ I-- +.-(S ').~ dv4-

2 2 +

+

G f +_____ +
10 0 m v i d

GS d

5+ +

+ + +-r +~ ~ -

S - 0 s

.+ 2 3 +
CI0 D. -DA + D .+ + V +

5 6 +w + u ;w f v-v
-~ 2 2 3T - -j' 0 dvT+ 1rd

s 6

I t.1) +I~ 4  3w+ y ý + + +
013 TV+ f ;A+ tly 4

o s 0

= f u 4 -n &

;E).



w

1I5 a [ aw o Y +

G 152 + , W wf dy ] dy
0 0

6 + + +

167 = j [u cly I d- yu
0 0

G + + 4 w + +
Gu 17- = f yýJ U dy 3 dy+

Using the law-cf-the-wall and the Mager hodograph, these

integrals may be evaluated numerically as functions of the
4-

parameters 1 , s Op, and 5 . The following curve-fits

are suggested for the numerical results:

G 1 "8.5 expt 0.475 XI /(l + O.l(a 6+)1f2) )

G_ 0.062 exp[ 0.8S4 X A(l + 0.12(a 6+ 1/2
z 1 S

G ()6+ (0.33 X 2 -3.06X + 9.84 - 6(0.078X1 1.50 a 6)+
3 1 1 . s

G• -S32500. G exp(0.285 X1/(1 + O.3(us 6+)1/2

S5 1 06+ (0.33 X1 - a s6+(0.1? 1 - 0.3 as 6)]

G 6 (1.53 X - 9.84 - aS 6+(0. 1 - 0.2 s 6+))

G7 e6 [0.33X2 - 4.59X1 + 19.65 - a 6 +(.6 X1 - 1.1 +s6*))
7 iS



G at *[ 2.50 1 - 12.5 - S(0.08 1 - 0.15 a 6+ )6 +

+ 26 +(0.2 112 _ 2.28 X, + 8.33)

91 1
r.9 " -0.71 0 exp[0.83 X 1/A l + 0..12(ULs 6+)I1/2)

M+ 2 _+
_r [0.07 _ 0.28 X + 0.42 - a 6 (0.92 A - 2.0 a 6+)]10O 1 [00 1i s 1 s

Gil 1 26+[0.2X 2.28A + 8.33 - a 5+(0.481 0.82a

G12 - 5.50 0 exp(0.63 ii+/(i 0.1(a s6+)I2)]

G )2S+10.08 A2 _ 0.58 A + 0.83 - a 6+(0.45 A - 0.9U C S+)]
13 1 1 s 1 s

G 14 G3

GI " W +(0.40 X 2 5.0 A + 18.7 - 0.30 a 6 +A )
151 1 9

S16 +[X2 - 5.0 A + 12.5 - a 6+(4.0 I - 4.0 a 6+)]
21 1 s I s

- ei6+(o.2 ^ - 1.5 X1 I+ 6.95)

G 05 + [O. A 2 _ 6.11 A + 19.65 - a 6 (0.87 A+ -
17 1 1 . (1 s 1 s

It is these curve-fits which w-re used to compare the

present theorv,- Eqns.13-38.39), with the three-dimensional

flow experiments of Figures 1.9 through 3.16.
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